747 research outputs found

    Self-Focused Attention and Post-Event Processing: Relevance to Social Performance Anxiety and Social Interaction Anxiety

    Get PDF
    This article originally appeared in the Journal of Cognitive Psychotherapy. The version of record is available at Springer via: http://dx.doi.org/10.1891/0889-8391.28.1.72This study examined the roles of self-focused attention and post-event processing in social performance anxiety and social interaction anxiety. College students (N = 101) completed measures of social performance anxiety, social interaction anxiety, self-focused attention, post-event processing, and beliefs related to social anxiety. Interoceptive self-focused attention and post-event processing predicted social performance anxiety after controlling for social interaction anxiety. The associations with social interaction anxiety were not significant after controlling for social performance anxiety. Associations of behavioral self-focused attention with social performance anxiety and social interaction anxiety were not significant after controlling for interoceptive self-focused attention. No evidence of an interaction between self-focused attention and post-event processing in the prediction of social anxiety was found. This study found no evidence that the associations of interoceptive self-focused attention and post-event processing with social performance anxiety were statistically mediated by high standards, conditional beliefs about self, and unconditional beliefs about self. These results and their theoretical implications are discussed

    Can latent heat safely warm blood? – in vitro testing of a portable prototype blood warmer

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Background Trauma/retrieval patients are often in shock and hypothermic. Treatment of such patients usually involves restoring their blood volume with transfusion of blood (stored at 2°C – 6°C) and/or crystalloids or colloids (stored at ambient temperature). Rapid infusion of these cold fluids can worsen or even induce hypothermia in these patients. Warming of intravenous fluids at accident sites has traditionally been difficult due to a lack of suitable portable fluid warmers that are not dependent on mains electrical or battery power. If latent heat, the heat released when a liquid solidifies (an inherently temperature limiting process) can warm intravenous fluids, portable devices without a reliance on electrical energy could be used to reduce the incidence of hypothermia in trauma patients. Methods Rapid infusion of red cells into patients was timed to sample typical clinical flow rates. An approved dry heat blood warmer was compared with a prototype blood warmer using a supercooled liquid latent heat storage material, to warm red cells whilst monitoring inlet and outlet temperatures. To determine the effect of warming on red cell integrity compared to the normal storage lesion of blood, extracellular concentrations of potassium, lactate dehydrogenase and haemoglobin were measured in blood which had been warmed after storage at 2°C – 6°C for 1 to 42 days. Results A prototype latent heat fluid warmer consistently warmed red cells from approximately 4°C to approximately 35°C at typical clinical flow rates. Warming of stored blood with latent heat did not affect red cell integrity more than the approved dry heat blood warmer. Conclusion Using latent heat as an energy source can satisfactorily warm cold blood or other intravenous fluids to near body temperature, without any adverse affects

    Rapidity and k_T dependence of HBT correlations in Au+Au collisions at 200 GeV with PHOBOS

    Full text link
    Two-particle correlations of identical charged pion pairs from Au+Au collisions at sqrt(s_NN) = 200 GeV were measured by the PHOBOS experiment at RHIC. Data for the most central (0--15%) events were analyzed with Bertsch-Pratt (BP) and Yano-Koonin-Podgoretskii (YKP) parameterizations using pairs with rapidities of 0.4 < y < 1.3 and transverse momenta 0.1 < k_T < 1.4 GeV/c. The Bertsch-Pratt radii decrease as a function of pair transverse momentum. The pair rapidity Y_pipi roughly scales with the source rapidity Y_YKP, indicating strong dynamical correlations.Comment: 5 pages, 2 figures. To appear in the proceedings of Seventeenth International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions (Quark Matter 2004), Oakland, California from January 11-17, 2004. Submitted to Journal of Physics G: Nuclear and Particle Physic

    Pseudorapidity and centrality dependence of the collective flow of charged particles in Au+Au collisions at sqrt{s_NN} = 130 GeV

    Full text link
    This paper describes the measurement of collective flow for charged particles in Au+Au collisions at sqrt{s_NN}} = 130 GeV using the PHOBOS detector at the Relativistic Heavy Ion Collider (RHIC). An azimuthal anisotropy is observed in the charged particle hit distribution in the PHOBOS multiplicity detector. This anisotropy is presented over a wide range of pseudorapidity (eta) for the first time at this energy. The size of the anisotropy (v_{2}) is thought to probe the degree of equilibration achieved in these collisions. The result here,averaged over momenta and particle species, is observed to reach 7% for peripheral collisions at mid-rapidity, falling off with centrality and increasing |eta|. Data are presented as a function of centrality for |eta|<1.0 and as a function of eta, averaged over centrality, in the angular region -5.0<eta<5.3. These results call into question the common assumption of longitudinal boost invariance over a large region of rapidity in RHIC collisions.Comment: 5 pages, 4 figures, submitted to Physical Review Letter

    Centrality dependence of charged hadron transverse momentum spectra in d+Au collisions at sqrt(s_NN) = 200 GeV

    Full text link
    We have measured transverse momentum distributions of charged hadrons produced in d+Au collisions at sqrt(s_NN) = 200 GeV. The spectra were obtained for transverse momenta 0.25 < p_T < 6.0 GeV/c, in a pseudorapidity range of 0.2 < eta < 1.4 in the deuteron direction. The evolution of the spectra with collision centrality is presented in comparison to p+pbarcollisions at the same collision energy. With increasing centrality, the yield at high transverse momenta increases more rapidly than the overall particle density, leading to a strong modification of the spectral shape. This change in spectral shape is qualitatively different from observations in Au+Au collisions at the same energy. The results provide important information for discriminating between different models for the suppression of high-p_T hadrons observed in Au+Au collisions.Comment: 5 pages, 4 figures, submitted to PR

    Energy dependence of elliptic flow over a large pseudorapidity range in Au+Au collisions at RHIC

    Full text link
    This paper describes the measurement of the energy dependence of elliptic flow for charged particles in Au+Au collisions using the PHOBOS detector at the Relativistic Heavy Ion Collider (RHIC). Data taken at collision energies of sNN=\sqrt{s_{_{NN}}} = 19.6, 62.4, 130 and 200 GeV are shown over a wide range in pseudorapidity. These results, when plotted as a function of η′=∣η∣−ybeam\eta'=|\eta|-y_{beam}, scale with approximate linearity throughout η′\eta', implying no sharp changes in the dynamics of particle production as a function of pseudorapidity or increasing beam energy.Comment: 5 pages, 4 figure

    Energy dependence of particle multiplicities in central Au+Au collisions

    Full text link
    We present the first measurement of the pseudorapidity density of primary charged particles in Au+Au collisions at sqrt(s_NN) = 200GeV. For the 6% most central collisions, we obtain dN_ch/deta|_|eta|<1 = 650 +/- 35 (syst). Compared to collisions at sqrt(s_NN) = 130GeV, the highest energy studied previously, an increase by a factor of 1.14 +/- 0.05 is found. The energy dependence of the pseudorapidity density is discussed in comparison with data from proton-induced collisions and theoretical predictions.Comment: 4 pages, 6 figures, submitted to PR

    The Landscape of Particle Production: Results from PHOBOS

    Full text link
    Recent results from the PHOBOS experiment at RHIC are presented, both from Au+Au collisions from the 2001 run and p+p and d+Au collisions from 2003. The centrality dependence of the total charged particle multiplicity in p+p and d+Au show features, such as Npart-scaling and limiting fragmentation, similar to p+A collisions at lower energies. Multiparticle physics in Au+Au is found to be local in (pseudo)rapidity, both when observed by HBT correlations and by forward-backward pseudorapidity correlations. The shape of elliptic flow in Au+Au, measured over the full range of pseudorapidity, appears to have a very weak centrality dependence. Identified particle ratios in d+Au reactions show little difference between the shape of proton and anti-proton spectra, while the absolute yields show an approximate m_T scaling.Comment: 8 Pages, 11 Figures, Plenary talk at Quark Matter 2004, Oakland, CA, January 11-18, 200

    System size and centrality dependence of charged hadron transverse momentum spectra in Au+Au and Cu+Cu collisions at sqrt(s) = 62.4 and 200 GeV

    Full text link
    We present transverse momentum distributions of charged hadrons produced in Cu+Cu collisions at sqrt(s) = 62.4 and 200 GeV. The spectra are measured for transverse momenta of 0.25 < p_T < 5.0 GeV/c at sqrt(s) = 62.4 GeV and 0.25 < p_T < 7.0 GeV/c at sqrt(s) = 200 GeV, in a pseudo-rapidity range of 0.2 < eta < 1.4. The nuclear modification factor R_AA is calculated relative to p+p data at both collision energies as a function of collision centrality. At a given collision energy and fractional cross-section, R_AA is observed to be systematically larger in Cu+Cu collisions compared to Au+Au. However, for the same number of participating nucleons, R_AA is essentially the same in both systems over the measured range of p_T, in spite of the significantly different geometries of the Cu+Cu and Au+Au systems.Comment: 4 pages, 5 figures, submitted to Phys. Rev. Let

    Collision geometry scaling of Au+Au pseudorapidity density from sqrt(s_NN) = 19.6 to 200 GeV

    Full text link
    The centrality dependence of the midrapidity charged particle multiplicity in Au+Au collisions at sqrt(s_NN) = 19.6 and 200 GeV is presented. Within a simple model, the fraction of hard (scaling with number of binary collisions) to soft (scaling with number of participant pairs) interactions is consistent with a value of x = 0.13 +/- 0.01(stat) +/- 0.05(syst) at both energies. The experimental results at both energies, scaled by inelastic p(pbar)+p collision data, agree within systematic errors. The ratio of the data was found not to depend on centrality over the studied range and yields a simple linear scale factor of R_(200/19.6) = 2.03 +/- 0.02(stat) +/- 0.05(syst).Comment: 5 pages, 4 figures, submitted to PRC-R
    • …
    corecore